Covariance Descriptor Multiple Object Tracking and Re-identification with Colorspace Evaluation
نویسندگان
چکیده
This paper addresses the multi-target tracking problem with the help of a matching method where moving objects are detected in each frame, tracked when it is possible and matched by similarity of covariance matrices when difficulties arrive. Three contributions are proposed. First, a compact vector based on color invariants and Local Binary Patterns Variance is compared to more classical features vectors. To accelerate object re-identification, our second proposal is the use of a more efficient arrangement of the covariance matrices. Finally, a multiple-target algorithm with special attention in occlusion handling, merging and separation of the targets is analyzed. Our experiments show the relevance of the method, illustrating the trade-off that has to be made between distinctiveness, invariance and compactness of the features.
منابع مشابه
Convolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملObject Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance
We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملAdaptive Covariance Tracking with Clustering-based Model Update
We propose a novel approach to track nonrigid objects using the recently proposed adaptive covariance descriptor [1] with clustering-based model update mechanism. The adaptive covariance descriptor represents an object of interest according to its characteristics in a smalldimensional covariance matrix and possesses higher discriminative power with respect to the original covariance descriptor....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012